Skip to main content

N-BUTIL BROMID

Butil bromide merupakan salah satu halogen alkana yang dikenal juga sebagai alkil halide. Nama lain dari butil bromide adalah bromo butane atau bias saja juga disebut dengan butil bromida. Rumus bangun dari butyl bromide adalah sebagai berikut :
CH3 – CH2 – CH2 - Br
Butyl bromide
n-butil bromide
Butil bromide mengandung seebuah bromo (Br) disalah satu gugusnya. Bromo adalah unsur kimia dalam tabel periodic unsure yang memiliki symbol Br dan nomor atom dalam gugus fungsi. Gugus alkilnya “butil” dan satu atom hydrogen telah digantikan dengan unsur Br. Butil bromida digunakan sebagai agen alkil yang dapat menghasilkan group atau kelompok alkil butyl yang membentuk ikatan-ikatan karbon dalam sintesis organik.
Butil bromide mempunyai warna kuning, biasanya dalam wujud cair, jika dilarutkan dalam air kelarutannya relative kecil, bersifat stabil dalam keadaan biasa. Butyl bromide akan teroksidasi dalam cahaya, larut dalam eter dan etanol.
N-butil bromide digunakan atau dimanfaatkan dalam sintesis karbon organic. N-butil bromide juga termasuk produk yang dihasilkan melalui aksi substitusi klasik nukleofilik yang dilakukan oleh banyak laboratorium. Agencinya harus berkisar antara 218 – 700 ribu pon yang akan stabil dibawah suhu normal dan didalam tekanan yang normal.
Hyosene n-butil bromide adalah salah satu contoh dari butyl bromide yang berguna dalam obat-obatan. Disamping itu ada juga valemat bromide yang digunakan untuk mengurangi rasa nyeri.
Nukleofilitas adalah ukuran kemampuan suatu pereaksi untuk menyebabkan nukleofil melakukan reaksi substitusi. Nukleofilitas relative dari sederet pereaksi ditentukan oleh laju relative

CH3CH2 – Br + OH- → CH2CH2 – OH + Br-

H2O ROH- Cl- OH- OR- I- C = N
(naiknya nukleofilitas)
Suatu daftar nukleofilitas relative tidak parallel searah eksat dengan daftar kuat basa. Namun, suatu basa kuat biasanya nukleofil yang lebih baik daripada cl- atau H2O.
Adapun factor – factor yang mempengaruhi nukleofilitas adalah karena beberapa alkil halide dapat menjalani reaksi substitusi dan eliminasi yang saling bersaingan. Pereduksi seperti OH dapat bertindak sebagai suatu nukleofil maupun sebagai suatu basa dalam suatu bejana reaksi.
Banyak senyawa organologam yang bersifat toksic atau beracun dan harus digunakan dengan hati-hati. Misalnya tetraklorida (CCl4) dan kloroform (CHCl3) yang dapat mengakibatkan kerusakan hati bila dihirup berlebihan. Insectisida yang mengandung organologam seperti DDT digunakan secara meluas dalam pertanian. Namun , penggunaan itu merosot akhir-akhir ini dikarenakan efek yang merusak lingkungan. Dipihak lain , beberapa senyawa halogen tampaknya sangat aman dan beberapa digunakan sebagai pemati rasa hirupan. Contohnya , adalah halotana (CH3CHBrCl) dan metoksi flurana .
(Penuntun Belajar. Hal : 60-61)
Pembuatan n-butil bromide berdasarkan penelitian menggunakan SN2 dengan mengkonversi 1-butanol untuk bromide 1-bromo butane. Reaksi substitusi merupakan suatu reaksi dimana satu atom ion atau gugus disubstitusikan untuk menggantikan ion, atom atau gugus lain.

HO- + CH3CH - Br → CH3CH2 – OH + Br-
Ion hidroksida bromo etana etanol

Dalam reaksi substitusi alkil halide, halide itu disebut gugus pergi yang baik (leaving group). Suatu istilah yang berarti gugus apa saja yang dapat digeser dari ikatan-ikatannya dengan suatu atom karbon.
Spesiasi yang menyerang suatu alkil halide dalam suatu reaksi substitusi disebut nukleofil (nucleophile/ pencinta nucleus) sering dilambangkan dengan Nu. Dalam persamaan reaksi diatas , OH- dan CH3O- adalah nukleofil. Umumnya sebuah nukleofil adalah spesi apa saja yang tertarik ke suatu pusat positif. Jadi , sebuah nukleofil ialah suatu basa lewis. Kebanyakan nukleofil adalah anion, namun beberapa molkul polar yang netral, seperti H2O, CH3OH, dan CH3CH2 dapat juga bertindak sebagai nukleofil.
Molekul netral seperti ini memiliki pasangan electron menyendiri yang dapat digunakan untuk membentuk ikatan sigma. Substitusi oleh nukleofil disebut substitusi nukleofil atau pengganti nukleofil.
(Fessenden & Fessenden. Kimia Organik. Hal : 170)
Lawan dari nukleofil adalah elektrofil (pecinta electron) yang sering dilambangkan dengan ET. Suatu elektrofil adalah spesi apa saja yang tertarik ke puasat negative. Jaddi , suatu elektrofil adalah suatu asam lewis seperti H+ atau ZnCl2. Suatu asam lewis ini merupakan hasil pengembangan teori lewis dari teori asam basa. Arrhenius pada waktu yang hampir bersamaan dengan Bronsted dan Lowry (1923). Teori lewis memiliki kelebihan disbanding teori bronsted lowry yaitu teori tersebut memungkinkan penggolongan asam basa digunakan dalam rekasi-reaksi dimana baik H+ maupun OH- tidak ada. Dalam hal ini asam H+ adalah sebagai penerima pasangan electron .
(petrucci.kimia dasar II.hal : 203)
Pada kimia organic maupun anorganik, substitusi nukleofil adalah suatu kelompok dasar reaksi substitusi, dimana sebuah nukleofil yang kaya electron, secara selektif berikatan dengan atau menyerang muatan positif dari sebuah gugus kimia atau atom yang disebut gugus lepas.
Bentuk reaksi umum ini adalah :

Nu : + R-X → R-Nu + X

Dengan Nu menandakan nukleofil, yang menandakan pasanganelektron, serta R-X menandakan substrat dengan gugus pergi ke X. Pada reaksi tersebut, pasangan electron dari nukleofil menyerang substrat membentuk ikatan baru. Sementara gugus pergi melepaskan diri bersama dengan sepasang electron. Produk utamanya adalah R- Nu. Nukleofil dapat memiliki muatan listrik negative ataupun netral. Sedangkan substrat biasanya netral atau bermuatan positif. Contoh substitusi nukleofilik adalah hidrolisis alkil bromide (R - Br) pada kondisi basa, dimana nukleofilnya adalah OH- dan gugus perginya adalah Br-.

R – Br + OH- → R – OH + Br-

Reaksi substitusi nukleofilik sangat dijumpai pada kimia organic dan reaksi-reaksi ini dapat dikelompokkan sebagai reaksi reaksi yang terjadi pada karbon alifatik atau pada karbon aromatic atau karbon tak jenuh lainnya.
Sintesis biasanya terdiri dari penggabungan kepingan kecil dan sederhana menjadi molekul besar yang kompleks. Untuk membuat sebuah molekul yang mengandung banyak atom dari molekul-molekul yang mengandung atom lebih sedikit, dapat diketahui bagaimana membuat dan memecahkan ikatan kimia. Walau sintesis urea dari Wohler suatu kebetulan, sintesis akan lebih efektif dan terkendali jika dilakukan dengan cara-cara yang rasional, sehingga semua atom yang tersusun akan berhubungan satu sama lainnya dengan benar dan menghasilkan produk yang dihasilkan.
Ikatan kimia dibuat dan dipecahkan melalui reaksi-reaksi kimia. Dengan demikian kita dapat mempelajari bagaimana menyambung molekul-molekul secara spesifik, suatu pengetahuan dalam sintesis.
Pada saat ini senyawa organic yang telah disintesis dalam laboratorium dan industry kimia jauh lebih banyak daripada yang diisolasi (dipisahkan) dari alam tetumbuhan dan hewan. Ada beberapa alas an mengapa penting sekali sintesis molekul. Pertama , dapat mensintesis produk alam dilaboratorium dengan mudahvdan dalam jumlah besar dengan harga yang lebih murah dibandingkan dengan pemisahan dari alam.
Alasan lain untuk sintesis adalah untuk menciptakan zat-zat baru yang mungkin memiliki sifat-sifat yang lebih berguna dibandingkan dengan hasil-hasil alami. Serat sintetik seperti nilon dan orlon yang mempunyai sifat-sifat tertentu yang lebih berguna dan lebih baik dari serat alami seperti sutra, kapas dan sisal. Banyak senyawa dalam obat-obatan adalah sintetik (termasuk aspirin, eter, novocain, dan harbiturat).
Contoh dari reaksi substitusi nukleofilik yang terjadi pada gugus karbonil pada sebuah keton dan langsung melalui substitusi dengan senyawa hemiasetat yang tidak stabil. Pada kimia organic ataupun pada kimia anorganik, substitusi nukleofilik adalah suatu kelompok dasar reaksi substitusi.
Menurut kinetiknya reaksi nukleofilik dapat dikelompokkan menjadi reaksi SN1 dan reaksi SN2. Substitusi pada “ halogen alkana primer “ atau reaksi SN2. Nukleofilik adalah sebuah spesies (ion atau molekul) yang tertarik dengan kuat kesebuah daeraah yang bermuatan positif pada sesuatu yang lain.
Nukleofil dapat berupa ion-ion penuh atau memiliki muatan yang sangat negative pada suatu tempat dalam sebuah molekul. Nukleofil – nukleofil yang umum antara lain ion hidroksi, ion sianida, air dan amoniak. Perhatikan bahwa masing-masing nukleofil mengandung sekurang-kurangnya satu pasangan electron.
Pada alkil halide tersier tidak dapat bereaksi secara SN2, bagaimana produk substitusi itu, ternyata alkil halide tersier mengalami substitusi dengan suatu mekanisme yang disebut reaksi SN1 (substitusi nukleofilik unimolekular). Hasil eksperimen yang diperoleh dalam reaksi SN1 cukup berbeda dengan reaksi SN2 secara khas tanpa mengalami suatu stantiomer murni dari suatu alkil halide yang mengandung karbon C – X yang tidak mengalami reaksi SN1, maka diperoleh dalam reaksi SN2, juga disimpulkan bahwa pada reaksinya pengaruh konsentrasi SN2.
Mekanisme rekasi 1-butanol dengan hydrogen bromide berlangsung dengan pemindahan air oleh ion bromida dari bentuk protonasi alcohol (ion alkilosonium).
Florinasi nukleofilik menggunakan CSF atau flourida logam alkali sesuai pada waktu reaksi singkat dihadapan (bmim) (BF4) affording produk yang diinginkan tanpa produk sampingan. Substitusi nukleofilik seperti halogenations, acetoxylextoon natriliton dan nikoxylations dihadapan garam ionic menyediakan produk yang diinginkan dalam hasil yang baik.
Atom halogen (F, Cl, Br atau I) dapat diwakili oleh X. dengan menggunakan lambing umum, maka alkil halide ialah RX dan aril halide seperti bromo benzene (C6H5Br) ialah ARX. Ikatan sigma karbon halogen terbentuk oleh saling mendidihnya suatu orbital atom halogen dan suatu orbital halogen atom karbon. Tak dapat dipastikan mengenai ada tidaknya hibridisasi atom karbon. Dalam suatu halide organic, karena sebuah halogen hanya membentuk satu ikatan kovalen dank arena itu dapat sudut ikatan disekitar atom ini. Namun, karbon menggunakan orbital halide yang sama tipenya untuk mengikat halogen maupun atom karbon lain.
Dalam reaksi kimia, struktur bagian alkil (dari) alkil halide berperan. Oleh karena itu peru dibedakan empat tipe alkil halide yaitu : metil , primer, sekunder, dan tersier. Suatu metil halide ialah suatu struktur dalam suatu hydrogen dari metana yang telah digantikan oleh sebuah halogen. Karbon ujung alkil halide ialah atom karbon yang terikat pada karbon ujung alkil halide primer (1.) (RCH2X) mempunyai satu gugus alkil terikat pada karbon ujung. Alkil halide primer (satu gugus alkil terdekat pada ujung)

CH3 → CH2Br
Bromoetana (etil bromida)

Suatu alkil halide sekunder (2.) (R2CHX) mempunyai dua gugus alkil yang terikat pada karbon ujung, dan suatu alkil halide tersier (3.) (R3CHX) mempunyai tiga gugus alkil yang terikat pada karbon ujung (perhatikan bahwa sebuah halogen yang terikat pada suatu sikloalkana haruslah sekunder atau tersier).
Karena dapat bereaksi lebih dari satu reaksi antara sebuah alkil halide dan sebuah nukleofil atau basa, maka reaksi substitusi dan reaksi eliminasi dikatakan sebagai reaksi bersaing. Reaksi bersaingan lazim dijumpai dalam kimia organic. Karena campuran produk kebanyakan persamaan organic tidak dilengkapi secara stokiometris.
Dalam SN2 alkil halide, metil halide menunjukkan laju tertinggi, diikuti oleh alkil halide primer, kemudian alkil halide sekunder. Alkil halide tersebut tidak bereaksi SN2.

3. RX 2. RX 1. RX CH3X
Naiknya laju reaksi SN2

Dengan bertmbahnya jumlah gugus alkil yang terikat pada karbon ujung (CH3X → 1. + 2. → 3.), keadaan transisinya bertambah berjejal dengan atom. Perhatikan contoh berikut dari reaksi alkil bromida dengan ion metoksida (CH3O-) sebagai nuklofil (CH3O- + RBr → CH3OR + Br-), yang ditunjukkan. Jejealan ruang dalam sturktur-struktur disebut rintangan sterik (steric hindrance). Bila gugus-gugus besar berjejalan dalam suatu ruang sempit, tolak-menolak antara gugus bertambah parah dank arena itu energy system tinggi. Dalam suatu reaksi SN2 energi suatu keadaan transisi yang berjejal lebih tinggi daripada energy keadaan transisi dengan rintangan sterik pindah. Karena inilah maka laju reaksi makin menurun dalam deret metil, primer, sekunder dan tersier.

Comments

Popular posts from this blog

PENETAPAN KADAR ANTALGIN DALAM TABLET

BAB I PENDAHULUAN I.1   Latar Belakang      Tablet adalah sediaan padat, dibuat secara kempa-cetak berbentuk rata atau cembung rangkap, umumnya bulat, mengandung satu jenis obat atau lebih dengan atau tanpa zat tambahan. (Anief, 1999)      Analgetik atau obat penghilang rasa nyeri adalah zat-zat yang mengurangi rasa nyeri tanpa menghilangkan kesadaran. Antalgin merupakan derivat sulfonat dari aminofenazon yang larut dalam air. Obat ini dapat secara mendadak dan tak terduga menimbulkan kelainan darah yang adakalanya fatal. Karena bahaya agranulositosis, obat ini sudah lama peredarannya dibanyak negara, antara lain Amerika serikat, Swedia, Inggris dan Belanda. (Raharja 2007)      Berbagai cara dapat dilakukan untuk menentukan kadar suatu obat, tergantung dari struktur kimia dan sifat fisiko-kimianya. Antalgin dapat ditentukan kadarnya dengan menggunakan metode titrasi iodimetri. Titrasi Iodimetri adalah titrasi langsung terhadap zat-zat yang potensial oksidasinya lebih r

MAKALAH ANALISA MAKANAN “PEMUTIH DAN PEMATANG TEPUNG”

MAKALAH ANALISA MAKANAN “PEMUTIH DAN PEMATANG TEPUNG” Kelompok 5: 1.       ADE IDA LAILATUL 2.       AHMAD FAUZI 3.       EVA NIKMATUL KHUSNA 4.       SISKA DESI ARIYANI INSTITUT ILMU KESEHATAN BHAKTI WIYATA KEDIRI TAHUN AJARAN 2013-2014 KATA PENGANTAR             Bismillahirrohmannirrahim,             Segala puji bagi Allah SWT yang telah memberikan rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan makalah ini, serta sholawat beriring salam untuk rasulullah Nabi Muhammad SAW sebagai contoh tauladan dalam kehidupan.                         Penulis menyadari sepenuhnya bahwa dalam penulisan maupun penyajian dalam tulisan ini masih jauh dari kesempurnaan, oleh karena itu dengan segala kerendahan hati penulis menerima kritik dan saran yang sifatnya membangun.             Akhirnya, harapan penulis semoga tulisan ini dapat memberi manfaat bagi kita semua. Kediri, 6 Januari 2014                                               

CONTOH KEMASAN SEDIAAN KRIM HERBAL